讲座题目1:Multi-criteria decision-making under an intuitionistic fuzzy environment
讲座时间:14:30
讲座人:刘华文教授
讲座内容简介:We introduce several methods for solving multi-criteria decision-making problem based on intuitionistic fuzzy sets. First, we define an evaluation function to measure the degrees to which alternatives satisfy and do not satisfy the decision-maker’s requirement. Then, we introduce and analyze the intuitionistic fuzzy point operators. Furthermore, a series of new score functions are defined for multi-criteria decision-making problem based on the intuitionistic fuzzy point operators and the evaluation function and their effectiveness and advantage are illustrated by examples.
讲座人简介:刘华文,山东大学数学学院教授、博士生导师。研究方向:不确定性推理、非经典数理逻辑与信息聚合函数。主持国家及省部级项目7项,发表学术论文120余篇,其中SCI检索72篇,单篇最高SCI他引330次。主要学术兼职:中国系统工程学会模糊数学与模糊系统委员会(国际模糊系统协会中国分会)常务理事,中国逻辑学会非经典逻辑与计算专委会常务委员,中国人工智能学会人工智能基础委员会委员。曾被聘为“全国优秀博士学位论文评选”通讯评议评审专家和教育部学位中心“学科评估”专家,获2018年度山东大学优秀博士论文指导奖、山东省优秀博士论文指导教师和2019年山东省优秀研究生指导教师。
讲座题目2:具有连续基础算子一致模的条件分配性
讲座时间:16:00
讲座人:覃锋教授
讲座内容简介:鉴于分配的逻辑连接词及其推广形式在模糊集合理论中的应用以及Klement教授在国际会议Linz2000闭幕式上的再次关注,我们研究了具有连续基础算子一致模之间的条件分配性。除了外层一致模定义域内的很小一部分外,我们给出了两个一致模算子结构的几乎完全刻画。最后,还找到了满足上述刻画条件但仍不分配的一致模对。
讲座人简介:覃锋,江西师范大学数学与信息科学学院教授,博士研究生导师,多值逻辑与模糊逻辑专业委员会常务委员,理论计算机科学专业委员会,中国人工智能学会人工智能基础专业委员会委员,中国模糊数学与模糊系统专业委员会委员,非经典逻辑与计算专委会首届常务理事,粒计算与知识发现专业委员会。入选省部级人才计划。主持了包括六项国家级项目在内的近二十项科研项目。获得省级奖项多次。共发表论文80余篇,其中32篇发表在SCI源刊(其中22篇发表在SCI二区以上期刊上),51篇被SCI、EI检索,出版专著1部。
讲座题目3:On the structure of uninorms with continuous underlying operations
讲座时间:17:30
讲座人:苏勇副教授
讲座内容简介:Uninorms, as an important class of connectives, have proved to be useful in a wide range of fields like aggregation of information, expert systems, neural networks, pseudo-analysis and measure theory, approximate reasoning, and so on. The class of uninorms with continuous underlying operations is a well-known class of uninorms. Mesiarová-Zemánková characterized this class of uninorms by the so-called symmetric, u-surjective and decreasing set-valued function, however, this characterization is not intuitive enough. This presentation will present inner structure of this class of uninorms by an intuitive way. To be specific, I will describe the relations of its two arbitrary summands and characterize the structure on Cartesian products of its underlying intervals corresponding to those two summands mentioned previously (one in $[0, e]$ and the other in $[e, 1]$, where $e$ is the neutral element of the uninorm).
讲座人简介:苏勇,博士,江南大学,理学院,副教授,硕士生导师。2017年博士毕业于山东大学数学学院,2016年在加拿大阿尔伯塔大学做联合培养博士。主持国家级、省部级项目多次。在IEEE Transactions on Fuzzy Syst., Fuzzy Set Syst., Inform. Sci., Intern. J. Approx. Reason.,等国际期刊上以第一作者身份发表SCI论文28篇(其中22篇发表在SCI二区以上期刊上)。主要从事不确定性推理、联结词/聚合算子理论研究。