报告人简介:
齐霄霏,山西大学数学科学学院教授、博导,现担任院长助理。主要从事算子理论与算子代数,以及量子信息中量子关联等的基础理论研究。出版学术专著1部,在Journal of Functional Analysis,Science in China,Physical Review A,Science in China等知名学术刊物上发表学术论文130余篇。获山西省自然科学奖二等奖1项,主持或完成国家自然科学基金项目4项、山西省优秀青年基金项目1项,以项目骨干成员身份(排名第2)参与科技部的科技创新2030-重大项目1 项。主持山西省一流课程《数学分析》一门;主持省教改项目1项。曾获山西大学青年英才,山西省高校优秀青年学术带头人,山西省高校131领军人才工程-优秀中青年拔尖创新人才,三晋英才计划青年优秀人才, 山西省科教兴晋突出贡献专家,山西大学十佳青年教师等。
报告简介:
Let B(H) and B_s (H) be the algebra of all bounded linear operators on a complex Hilbert space H and the Jordan algebra of all self-adjoint operators in B(H), respectively. In this paper, we first introduce the concept of strong numerical radius orthogonality on bounded linear operators, and then give some useful properties about (strong) numerical radius orthogonality of operators. Based on these results, we characterize all maps preserving (strong) numerical radius orthogonality on B(H) and B_s (H), respectively.